Optical Science and Engineering Program

Fall 2019 Student Orientation
Mansoor Sheik-Bahae (General Chair)- P&A
Ganesh Balakrishnan (co-Chair)- ECE/CHTM

AGENDA

I. Welcome to OSE

II. GPSA, SPIE, OSA, GSA-Physics Student Chapters
 Mostafa Peysokhan and Peter Sinclair

III. Samples of OSE Faculty Research Presentations
 Prof. Lidke of P&A and Prof. Osinski of ECE

IV. OSE Program Rules
 Sheik-Bahae

V. OSE New Student Group Picture

VI. Tour of CHTM Facility

OSE Sr. Program Advisor
Ms. Doris Williams
UNM’s Optical Science and Engineering Program

Administered jointly by P&A and ECE
Established in 1983

One of five universities in the US with PhD and MS degrees in Optics
The Big Picture: New Mexico’s (and UNM’s) unique position

- 3 NM National Labs
- CINT Facilities
- NM Optics Industry
 96 photonics-related firms in NM
>30 Affiliated Faculty (15 P&A, 13 ECE, 2 Chem, 1 CNE, 1 Math)
Graduate Student Data

- Ph.D. degrees awarded in the past 10 years: 70
- Total OSE degrees (since 1985): 255
- Current Graduate Student Enrollment: ≈ 70
- New, incoming students in 2018: 15
- New TAs/GAs/RAs = 9 (Current total ≈ 14)
- Total RAs: ≈ 35 (P&A, CHTM and ECE combined)
Diverse Research Activities in Optics and Photonics
OSE Research Areas

❖ Advanced Materials (Balakrishna, Feezell, Shreve, Hehlen)
❖ Biomedical Optics (Thomas, Lidke, Osinski, Shreve, Hossein Zadeh)
❖ Fibers and Fiber Optics (Jain, Hossein Zadeh, Mafi)
❖ Laser Cooling in Solids (Sheik-Bahae)
❖ Laser Physics (Sheik-Bahae, Diels, Rudolph, Dawson, Mafi)
❖ Semiconductor Lasers (Osinski, Balakrishnan, Feezell, Sheik-Bahae)
❖ Ultrafast Lasers and Phenomena (Rudolph, Diels, Sheik-Bahae)
❖ Optical Communication (Hayat, Jain, Mafi)
❖ Spectroscopy (Rudolph, Emmert, Diels)
❖ Gamma-ray detection (Matthews)
❖ Bio-Photonics (Lidke, Thomas, Hossein-Zadeh)
❖ Nano Lithography (Brueck)
❖ Nanophotonics (Hossein-Zadeh, Habteyes, Acosta, Manjacavas)
❖ Nonlinear Optics (Sheik-Bahae, Rudolph, Diels, Mafi)
❖ Optical Imaging & Microscopy (Rudolf, Emmert, Prasad, Hayat, Lidke, Mafi, Acosta)
❖ Photodetectors and IR/Spectral Focal–Plane Arrays (Hayat, Zarkesh-ha)
❖ Microresonators (Hossein-Zadeh)
❖ Quantum Optics and Quantum Information (Prasad, Caves, Deutsch, Bacerra, Acosta, Mafi, Manjacavas)
❖ Photovoltaics (Balakrishnan)
M.S. PROGRAM

Requirements (Credit Hours):

<table>
<thead>
<tr>
<th>Plan</th>
<th>Courses (Total)</th>
<th>Courses A</th>
<th>Courses B</th>
<th>Thesis</th>
<th>Res.Seminar/Problems</th>
<th>Free Elect.</th>
<th>Internship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan 1 (Thesis)</td>
<td>30</td>
<td>15</td>
<td>6</td>
<td>6</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Plan 2a (Course & Examination)</td>
<td>33</td>
<td>15</td>
<td>9</td>
<td>-</td>
<td>3 (2 in optics)</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>Plan 2b (Internship)</td>
<td>33</td>
<td>15</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Plan III</td>
<td>36</td>
<td>15</td>
<td>12</td>
<td>-</td>
<td>3 (2 in optics)</td>
<td>6</td>
<td>-</td>
</tr>
</tbody>
</table>

- ✓ 12 hours of coursework must be taken at 500 level or higher
- ✓ students in Plan 1 must submit and defend a thesis
- ✓ students in Plan 2a must pass an oral exam, 2b has technical report and public presentation
M.S. Program

Mandatory

• Advanced Optics I (Physics 463 or ECE 464)
• Optics Lab (Physics 476L or 477L)
• E&M (Physics 511 or ECE 561)
M.S. Program

Three Concentrations:

Common Core Courses to all Concentrations:
- Advanced Optics I (PHYC 463 or ECE 463)
- Experimental Techniques of Optics (PHYC 476L or 477L)
- Electrodynamics (PHYC 511 or the ECE 555/ECE 561 sequence)
- Three credit hours of seminar, including one Optics seminar

Plus the following core courses depending on the concentration:

- **Optical Science Concentration**
 - Advanced Optics II (PHYC 554 or ECE 554)
 - Laser Physics I (PHYC 464 or ECE 464)

- **Photonics Concentration**
 - Semiconductor Optical Materials and Devices (ECE 570)
 - Semiconductor Physics (ECE 471/ECE 572 sequence)

- **Imaging Science Concentration**
 - Probability Theory and Stochastic Processes (ECE 541)
 - Digital Image Processing (ECE 533)
List B (Option-Based):

- Introduction to Optoelectronics (ECE 475)
- Quantum Mechanics I (Physics 521)
- Microelectronics Processing Lab (ECE 574L)
- Nonlinear Optics (Physics 555 or ECE 568)
- Solid State Physics (Physics 529) or Semiconductor Properties (ECE 572)
- Topics in Modern Optics (Physics 569) or Special Topics (ECE 595)
- Laser Physics II (Physics 564)
- Semiconductor Lasers and LEDs (ECE 577)
- Quantum Optics (Physics 566)
- Atomic and Molecular Structure (Physics 531)
- Optical Coherence Theory (Physics 556)
- Guided Wave Optics (ECE 564)
- Optical Fiber Communication (ECE 565)
- Synthesis of Nanostructures (ECE 518 or NSMS 518)
- ECE 595 - Microwave Photonics
- + more
Ph.D. Program

Four Concentrations:

i. Optical Sciences & Engineering
ii. Photonics
iii. Imaging Science
iv. Quantum Optics

Mandatory List A (Common to all tracks)

• Advanced Optics I (Physics 463 or ECE 464)
• Optics Lab (Physics 476L or 477L)
• E&M (Physics 511 or ECE 561)
• OSE Seminar (PHYC 500) 2 semesters for first year
Ph.D. Program
Optical Science and Engineering Concentration

➢ Advanced Optics I (PHYC 463 or ECE 463)
➢ Electrodynamics (PHYC 511 or the ECE 555/ECE 561 sequence)
➢ Optics Lab (PHYC 476L or 477L)
➢ Advanced Optics II (PHYC 554 or ECE 554)
➢ Laser Physics I (PHYC 464 or ECE 464)

➢ Methods in Theoretical Physics I (PHYC 466 or Math 466) or ECE 555
➢ Quantum Mechanics I (PHYC 521) or Semiconductor Physics (the ECE 471/ECE 572 sequence)
➢ Nonlinear Optics (PHYC 568 or ECE 568)
➢ 3 credit hours of seminar, including two OSE seminars
Ph.D. Program

Photonics Concentration

➢ Advanced Optics I (PHYC 463 or ECE 463)
➢ Experimental Techniques of Optics (PHYC 476L or 477L)
➢ Advanced Optics II (PHYC 554 or ECE 554)
➢ Electrodynamics (PHYC 511 or the ECE 555/ECE 561 sequence)
➢ Semiconductor Optical Materials and Devices (ECE 570)

➢ Fundamentals of Semiconductor LEDs and Lasers (ECE 577), or Laser Physics I (PHYC/ECE 464)
➢ Semiconductor Physics (the ECE371/ECE 572 sequence), or Introduction to Solid State Physics (PHYC 430)
➢ One Course from Optical Communication and Subsystems (ECE 565) or Guided-wave (ECE 564)
➢ 3 credit hours of seminar, including two OSE seminars
Ph.D. Program
Imaging Science Concentration (will change to Bio-Photonics)

➢ Advanced Optics I (PHYC 463 or ECE 463)
➢ Advanced Optics II (PHYC 554 or ECE 554)
➢ Experimental Techniques of Optics (PHYC 476L or 477L)
➢ Electrodynamics (PHYC 511 or the ECE 555/ECE 561 sequence)
➢ Probability Theory and Stochastic Processes (ECE 541)

➢ Digital Image Processing (ECE 533)
➢ Choose one: Medical Imaging (ECE 510) or IR Detectors (ECE 595) or Advanced Topics in Image Processing (ECE 633); or Advanced Techniques in Optical Imaging (Bio 547).

➢ 3 credit hours of seminar, including two OSE seminars
Ph.D. Program
Quantum Optics Concentration

➢ Advanced Optics I (PHYC 463 or ECE 463)
➢ Experimental Techniques of Optics (PHYC 476L or 477L)
➢ Electrodynamics (PHYC 511 or the ECE 555/ECE 561 sequence)
➢ Laser Physics I - PHYC 464
➢ Quantum Mechanics I – PHYC 521

➢ Quantum Mechanics II – PHYC 522
➢ A 3 credit hour class chosen from Pool B: Program Electives
➢ Quantum Optics I – PHYC 566
➢ Three credit hours of seminar, including two OSE seminars
List B/Pool B (Option-Based): See OSE Website

<table>
<thead>
<tr>
<th>Option-Based Courses</th>
<th>Core Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>❑ Electro Magnetics (ECE 555)</td>
<td>❑ Nonlinear Optics – PHYC 568</td>
</tr>
<tr>
<td>❑ Information theory and coding (ECE 549)</td>
<td>❑ Optics I – PHYC. 463</td>
</tr>
<tr>
<td>❑ Theory of linear systems (ECE 500)</td>
<td>❑ Optics II – PHYC. 554</td>
</tr>
<tr>
<td>❑ Introduction to electro-optics and opto-electronics (ECE 475)</td>
<td></td>
</tr>
<tr>
<td>❑ Graduate Quantum Mechanics I (PHYC 521)</td>
<td>❑ Optics Lab - 466L/467L</td>
</tr>
<tr>
<td>❑ Semiconductor Physics (ECE 572)</td>
<td>❑ Quantum Optics II – PHYC. 581</td>
</tr>
<tr>
<td>❑ Graduate Quantum Mechanics II (PHYC 522)</td>
<td>❑ Quantum Information Theory – PHYC. 572</td>
</tr>
<tr>
<td>❑ Spectroscopy (Chem 566)</td>
<td>❑ Quantum Computation – PHYC. 571</td>
</tr>
<tr>
<td>❑ Guided Wave Optics (ECE 564)</td>
<td>❑ Semiconductor Physics (the ECE 471/ECE 572 sequence)</td>
</tr>
<tr>
<td>❑ Synthesis of Nanostructures (ECE 518 or NSMS 518)</td>
<td></td>
</tr>
<tr>
<td>❑ Electrodynamics (PHYC 511)</td>
<td>❑ Semiconductor Materials and Optical Devices – ECE 570</td>
</tr>
<tr>
<td>❑ Quantum Computation (PHYC 571)</td>
<td>❑ Materials and Devices II – ECE 471</td>
</tr>
<tr>
<td>❑ Foundations of Engineering Electromagnetics (ECE 555)</td>
<td></td>
</tr>
<tr>
<td>❑ Quantum Information Theory (PHYC 572)</td>
<td>❑ Quantum Optics (PHYC 566)</td>
</tr>
<tr>
<td>❑ Fundamentals of Semiconductor LEDs and Lasers (ECE 577)</td>
<td></td>
</tr>
<tr>
<td>❑ Quantum Optics (PHYC 566)</td>
<td>❑ Detection and estimation Theory (ECE 642)</td>
</tr>
<tr>
<td>❑ Detection and estimation Theory (ECE 642)</td>
<td>❑ Optoelctronic Semiconductor Materials and Devices (ECE 570)</td>
</tr>
<tr>
<td>Computational Methods for Electromagnetics (ECE 563)</td>
<td>❑ Digital Image Processing (ECE 533)</td>
</tr>
<tr>
<td></td>
<td>❑ Pattern Recognition (ECE 517)</td>
</tr>
<tr>
<td></td>
<td>❑ Digital signal processing (ECE 539)</td>
</tr>
<tr>
<td></td>
<td>❑ Probability Theory and Stochastic Processes (ECE 541)</td>
</tr>
</tbody>
</table>
OSE Seminar Series, PHYC 500

- The OSE Seminar Series course (PHYC 500, CRN 46023 Section 018).
- Features a series of talks focused on the latest research in the field of Optical Science and Engineering.
- Speakers include world-wide experts in the field of optics from academia, industry and national labs, as well as OSE faculty and students.
- Class will meet every Wednesday from 11:00 AM to 12:00 PM at the CHTM (Room 101) or Physics and Astronomy (Room 190). Check the weekly announcement.
- Registered students will receive 1.0 credit hours for a successful completion of the course.
- All new incoming students are required to sign up for the course (2 semesters).
- All continuing OSE students from all tracks are highly encouraged to take the course.
Suggested First Year Course Schedule

Optical Science Concentration

Fall 2018:
• Advanced Optics I (PHYC 463 or ECE 463)
• Methods in Theoretical Physics I (PHYC 466 or Math 466) or ECE 555
• Laser Physics I (PHYC 464 or ECE 464)
• OSE Seminar Series (PHYC 500)

Spring 2019:
• Advanced Optics II (PHYC 554 or ECE 554)
• Experimental Techniques of Optics (PHYC 476L or PHYC 477L)
• Electrodynamics (PHYC 511 or the ECE 555/ECE 561 sequence)
• OSE Seminar Series (PHYC 500)
Suggested First Year Course Schedule

Photonics Concentration

Fall 2018:
• Advanced Optics I (PHYC 463 or ECE 463)
• Optoelectronics Semiconductor Materials and Devices (ECE 570)
• Semiconductor Physics (ECE 371 Fall /ECE 572 sequence)
• Methods in Theoretical Physics I (PHYC 466 or Math 466) or ECE 555
• OSE Seminar Series (PHYC 500)

Spring 2019:
• Advanced Optics II (ECE 554 or PHYC 554)
• Semiconductor Physics (the ECE471/ECE 572 sequence)
• Experimental Techniques of Optics (PHYC 476L OR 477L)
• Electrodynamics (PHYC 511 or the ECE 555/ECE 561 sequence)
• OSE Seminar Series (PHYC 500)
Suggested First Year Course Schedule

Imaging Science Concentration

Fall 2018:
• Advanced Optics I (PHYC 463 or ECE 463)
• Methods in Theoretical Physics I (PHYC 466 or Math 466) or ECE 555
• Probability Theory and Stochastic Processes (ECE 541)
• OSE Seminar Series (PHYC 500)

Spring 2019:
• Advanced Optics II (ECE 554 or PHYC 554)
• Digital Image Processing (ECE 533)
• Experimental Techniques of Optics (PHYC 476L OR 477L)
• Electrodynamics (PHYC 511 or the ECE 555/ECE 561 sequence)
• OSE Seminar Series (PHYC 500)
Quantum Optics Concentration

Fall 2018:
• Lasers I (PHYC 464 or ECE 464)
• Advanced Optics I (ECE 463 or PHYC 463)
• Methods in Theoretical Physics I (PHYC 466 or Math 466) or ECE 555
• Graduate Quantum Mechanics I (PHYC 521)
• OSE Seminar Series (PHYC 500)

Spring 2019:
• Graduate Quantum Mechanics II (PHYC 522)
• Experimental Techniques of Optics (PHYC 476L OR 477L)
• Electrodynamics (PHYC 511)
• OSE Seminar Series (PHYC 500)
TIME TO M.S. DEGREE

The Faster the better!

- All requirements for the master’s degrees must be completed within seven years prior to granting the degree.

- No course work applied to the degree requirements, including transfer work, may be more than seven years old at the time a master’s degree is conferred.

Common case: 1-2 years full time
Doctoral students have a **five-year time limit** for completion of degree requirements commencing with the semester in which they pass the **Doctoral Comprehensive Examination**.

The Faster the better!

Common case: 3–5 years full time
PhD Qualifying Exam

- 4 exams: 2 common exams (common to all tracks), and 2 track-specific exams

- All exams are offered in August; some track-specific exams may also be offered in January.

The **common exams** are in

- Electromagnetics (3 hours) - largely based on material covered in PHYC511 or ECE561
- General Optics (3 hours) - largely based on material covered in PHYC/ECE463 and PHYC476L.

- Must attempt the Written Qualifying Examinations after your first complete academic year;

- Must pass all four examinations before beginning their third academic year;

- Each exam may be attempted at most twice. The lowest passing score is 60%.

✓ Part-time students are not subject to the timetables above.
✓ The qualifying exam may satisfy the exit examination requirement for MS Plan II.
The track-specific (concentration) exams are in

Optical Sciences
- Advanced Optics
- Lasers

Photonics
- Semiconductor Optical Materials & Devices
- Advanced Optics

Imaging Science
- Stochastic Processes
- Advanced Optics

Quantum Optics
- Lasers
- Quantum Mechanics (Physics Preliminary Exam)

✓ The contents of exams are largely based on the corresponding graduate courses.
✓ Each track exam is 1.5 hours.
The exam is waived for students who earn an average GPA of 4.0 or greater (no lesser than A-) for their OSE core courses:

Photonics: Adv. Optics I & II, Electromagnetics, ECE 570

Imaging Science: Adv. Optics I & II, Electromagnetics, ECE 533

Quantum Optics: Adv. Optics I, Electromagnetics, Laser Physics I, Quantum Mechanics I
SEMESTER COURSE LOADS

- **Full-time student:**
 - Enrolling for and completing a minimum of 9 graduate credit hours per semester is considered to be a full-time student.
 - If holding an assistantship, the minimum course load is 6 graduate credit hours per semester.

- **International students**
 - Can no longer obtain a “W”, “WP”, “WF” at any time during the semester, if they fall below the 6 required courses for RAs or GAs or below 9 hours for students not holding an assistantship.
599/699 GRADES & ENROLLMENT

- Grades
 - Semester grades for 599/699 hours should be **PR (progress)**
 - At the time of graduation the student’s transcript will indicate that he/she earned
 - M.S.: 6 hours of thesis (599) credit (CR)
 - PhD.: 18 hours of dissertation (699) credit (CR)

- Enrollment
 - Once initiated, **continuous enrollment** (Fall and Spring semesters) in 599/699 is required until the thesis/dissertation is accepted by the Dean of Graduate Studies.
 - Students who complete degree requirements during a summer session must be enrolled in a minimum of one 599/699 credit hour.
Pass/Fail (CR/NC) Option For Graduate Students:

No more than 6 credit hours of course work in which a grade of C (2.0), C+ (2.33) or CR (grading option selected by student) was earned may be credited toward a graduate degree. Courses offered only on a CR/NC basis and required by the graduate program are excluded from this limitation.

A graduate student has the option of enrolling in courses on a Pass/Fail (CR/NC) basis. However, if a graduate student with undergraduate deficiencies is required by the major department to take a lower-division course, the pass/fail (CR/NC) option is not available to the student.

Source: UNM Catalog
50% Instructor Rule

No more than 50% of the total degree credits can be taken with one instructor and counted toward degree credits.

e.g. 52 credits are needed for PhD. A Student may count only 26 credits with the same professor toward the PhD degree.
GPA FOR GRADUATION

- A Student must have
 - a minimum cumulative GPA of 3.0 in *graduate-level courses* taken in graduate status at the time of degree completion
 - a minimum GPA of 3.0 for courses listed in their *Program of Studies or Application for Candidacy*.
 - no more than 6 credit hours of course work in which a grade of C (2.0), C+ (2.33) or CR (grading option selected by student) was earned may be credited toward a graduate degree (excluding seminar courses)

- Students may not graduate with *Incompletes* pending in any graduate course.
TRANSFER CREDIT & APPLIED CREDIT

- **What can be transferred:**
 - The course work, graded at least a B, was taken at an accredited institution and is approved by both OSE grad committee and OGS;
 - Course work that has been counted toward a previous degree may not be counted again toward any other degree except Master's course work for a doctoral degree.

- **When to transfer:**
 - Listing them on the Program of Studies or the Application for Candidacy

- **Applied credit:**
 - At most 9 credits are acceptable for transfer from non-degree to degree status

- **A maximum of 50% of the course work requirements may consist of a combination of applied/transfer credits**
ACADEMIC INTEGRITY

You are expected to maintain the highest standards of honesty and integrity in academic and professional matters.

- The University reserves the right to take disciplinary action, up to and including dismissal, against any student who is found guilty of academic dishonesty or otherwise fails to meet these standards.
- Academic dishonesty includes, but is not limited to,
 - dishonesty on quizzes, tests or assignments;
 - claiming credit for work not done or done by others;
 - hindering the academic work of other students; and
 - misrepresenting academic or professional qualifications within or outside the University.

See UNM Catalog
http://www.unm.edu/~unmreg/catalog.htm
The following slides contain information about Program of Studies (POS), thesis and dissertation committee rules, and other program and/or university requirements prior to graduation. All incoming students should be aware of these requirements and, if need be, seek more detailed information from OSE Program Advisor (Ms. Williams).
A student seeking a MS degree should prepare and submit a Program of Studies (POS)

- Indicating the courses that will be counted toward the degree
- Finally decide to choose Plan I or II
- Time to get all transfer credits approved

POS should be approved by

- Your advisor
- General Chair or Co-Chair of the OSE Graduate Program
- Office of Graduate Studies (OGS)

and sent to OGS by ECE Graduate Office

This form is available online

http://www.unm.edu/grad/forms/forms.html
MS: THESIS/PROJECT COMMITTEE

- Consisting of at least three members
 - Chair must be a *regular faculty member from OSE*
 - At least 2 must be *regular faculty from UNM*
 - **External member**: a regular faculty member whose primary appointment is *outside of the student’s home department*.
 - All committee members (both internal and external to UNM) must be *approved for graduate instruction*

PS. A regular faculty is a faculty who has a tenured or tenure-track appointment
A student seeking a Ph.D. must prepare and submit an Application for Candidacy form:

- Indicating the courses that will be counted toward the degree
- To be done during the semester in which the comprehensive examination is passed.
- Time to get all transfer credits approved

Application for Candidacy should be approved by:

- Your advisor
- General Chair of Co-Chair of the OSE Graduate Program
- OGS

and sent to OGS by OSE Program Advisor.

This form is available online:

http://www.unm.edu/grad/forms/forms.html
PHD: DISSERTATION/COMPREHENSIVE EXAM COMMITTEE

Consisting of at least four members

- **Chair** must be *a regular faculty member from OSE*
- **At least 2** must be *regular faculty from UNM*
- **External member**: a regular faculty member whose primary appointment is *outside of the student’s home department*.
- **All committee members** (both internal and external to UNM) must be *approved for graduate instruction*

PS. A regular faculty is a faculty who has a tenured or tenure-track appointment
REQUIRED ENROLLMENT

- A student must be enrolled for at least 1 graduate credit for the semester (including the summer session) in which they complete degree requirements.

- In order to qualify to sit for a master’s exam during the intersession, the student must be registered for the following semester.
A Student must inform the OSE Program Advisor in writing of their Intent to Graduate no later than 11:00 a.m. on the last day of the semester immediately preceding the semester of graduation.

➢ If a student does not complete all degree requirements for graduation in a particular semester, the student must submit a new Intent to Graduate form for graduation in a subsequent semester.
POS/A4C AND INTENTION TO GRADUATE

Plan ahead & graduate in time!

<table>
<thead>
<tr>
<th>Deadlines</th>
<th>Obtain degree at the end of semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spring</td>
</tr>
<tr>
<td>1. Submission of POS or A4C</td>
<td>Oct 1</td>
</tr>
<tr>
<td>2. Signup for graduate intention</td>
<td>Last day of Fall</td>
</tr>
<tr>
<td>3. Announce the examination</td>
<td>Apr 1</td>
</tr>
</tbody>
</table>

The earlier the better!